
Application of metamorphic testing monitored by test
adequacy in a Monte Carlo simulation program

Junhua Ding1 • Xin-Hua Hu2

Published online: 14 September 2016
� Springer Science+Business Media New York 2016

Abstract One of the grand challenges for adequately testing complex software is due to

the oracle problem. Metamorphic Testing (MT) is a promising technique to alleviate the

oracle problem through using one or multiple Metamorphic Relations (MRs) as test ora-

cles. MT checks the satisfaction of every MR among the outputs of the MR-related tests

instead of the correctness of individual test outputs. In practice, it is fairly easy to find MRs

for testing any program, but it is very difficult to develop ‘‘good’’ MRs and evaluate their

adequacy. A systematic approach for developing MRs and evaluating their adequacy in

MT remains to be developed. In this paper, we propose a framework for evaluating MT and

iteratively developing adequate MRs monitored by MT adequacy evaluation. The MT

adequacy is measured by program coverages, mutation testing, and testing MRs with

mutation tests. The MT evaluation results are used for guiding the iterative development of

MRs, generating tests, and analyzing test outputs. We explain the framework through a

testing example on an image processing program that is used for building the 3-dimen-

sional structure of a biology cell based on its confocal image sections. In order to

demonstrate the effectiveness of the proposed framework, we reported a case study of

testing a complex scientific program: a Monte Carlo modeling program that simulates

photon propagations in turbid tissue phantoms for accurate and efficient generation of

reflectance images from biological tissues. The case study has shown the effectiveness of

proposed MT framework for testing scientific software in general and the necessity of the

MT enhancement in the development of adequate MRs. The case study results can be

easily adapted for testing other software.

Keywords Oracle problem � Metamorphic testing � Metamorphic relation � Test coverage
criterion � Mutation testing � Monte Carlo method

& Junhua Ding
dingj@ecu.edu

1 Department of Computer Science, East Carolina University, Greenville, NC, USA

2 Department of Physics, East Carolina University, Greenville, NC, USA

123

Software Qual J (2017) 25:841–869
DOI 10.1007/s11219-016-9337-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9337-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-016-9337-3&domain=pdf

1 Introduction

While adequately testing complex software is challenging, testing ‘‘non-testable’’ software

is more difficult due to the oracle problem (Barr et al. 2015; Weyuker 1982). Many

scientific software systems belong to the ‘‘non-testable’’ category. In this paper, we will

explain a new approach and demonstrate its effectiveness for adequately testing ‘‘non-

testable’’ programs with results of study performed on two scientific software systems.

Scientific software typically contains a large computational component for supporting

scientific investigation and decision making (Kanewala and Bieman 2014). The examples

of scientific software include simulation software of nuclear reactions, software for pre-

dicting and tracking hurricanes, and software for analyzing medical images. Testing sci-

entific software faces many challenges due to its complexity and the knowledge gap 1:

public int getMid between the software developer and its tester (Kanewala and Bieman

2014). The oracle problem is the key to solve the testing of scientific software (Kanewala

and Bieman 2014). Many techniques have been developed for alleviating the oracle

problem. The techniques can be classified into three categories: the references-based

technique that checks a test against a different implementation of the program, reference

data sets, experiment results, and any other available references (Sanders and Kelly2008;

Weyuker 1982); the analytics-based technique that checks a test against analytics results

and special test cases (Mayer 2005; Farrell et al. 2011; Nguyen-Hoan et al. 2010; and

Metamorphic Testing (MT) (Chen et al. 1998; Segura et al. 2016) There is no perfect

solution to solve the oracle problem, but MT provides a framework that can be easily

integrated with any other technique for developing test oracles to adequately test scientific

software (Jameel et al. 2015). MT aims at verifying the satisfaction of every metamorphic

relationship (MR) among the outputs of the MR-related tests instead of the correctness of

each individual output (Chen 1998). If an MR is violated, the software under test (SUT)

must have defects (Chen 1998; Murphy 2009). Specifically, MT creates tests according to

MRs and then verifies the predictable relations among the outputs of the MR-related tests.

Given f(x) as the output of test input x and t as the transform function for an MR, one can

create an MR-related metamorphic test input t(x, f(x)) by applying function t to source test

input x. The transform allows testers to predict the relationship between the outputs of

source test input x and its transformed follow-up test input t(x, f(x)) according to MR: (f(x),

f(t(x, f(x)))) (Xie et al. 2011). MT was first proposed by Chen for test generation and

alleviating oracle problems (Chen et al. 1998). It has been successfully applied for testing

many different applications such as bioinformatics, machine learning, compilers, scientific

computing, large-scale database, and online service systems (Chen et al. 2009; Ding et al.

2010; Ding and Zhang 2016; Le et al. 2014; Lindvall et al. 2015; Segura et al. 2016; Xie

et al. 2011; Zhou et al. 2015).

Results was collected from applications, and empirical studies of MT show that the

effectiveness of MT is highly dependent on the quality of the identified MRs and tests

generated from the MRs. The violation of an MR implies defects in the software under test

(SUT), but satisfaction of the MR does not guarantee the absence of defects. Program

getMid shown in Fig. 1 is implemented to find the middle value among three inputs. This

program has a permutation property, which means the output is independent of the order of

the three inputs. For instance, two inputs\x1, x2, x3[and\x1, x3, x2[should produce the

same output. Thus, the permutation property can be used as an MR for testing getMid. If a

faulty version of getMid that misses the code section from line 13 to line 17 was imple-

mented, the defect can be easily revealed by MR permutation with metamorphic test (\x1,

842 Software Qual J (2017) 25:841–869

123

x2, x3[, \x1, x3, x2[), since they return two different middle values. Nevertheless,

incorrect outputs of a faulty program could accidently satisfy an MR. For example, if line

18 in getMid is implemented to return x1 instead of x2, then the defect will not be found by

MR permutation. It is worth noticing that the defect is not necessarily revealed even all

statements or branches of the program are covered by the tests. Although MT can be

enhanced with structural testing or other white-box testing techniques, MT evaluation

requires additional test adequacy criteria that are specifically designed for the evaluation of

adequacy of MRs. The criteria for evaluating the adequacy of MRs and the approach for

iteratively creating adequate MRs guiding by test evaluation results are two topics to be

addressed in this research.

In this paper, we propose an enhancement to MT with a framework for guiding the

iterative development of adequate MRs and tests based on MT test adequacy evaluation

results. The test evaluation consists of three tasks: evaluation of program coverage such as

statement coverage and condition coverage; mutation testing; and testing MRs with

mutation tests. A mutation test set is a group of tests that violate an MR that is under

evaluation. The program coverage is evaluated through runtime code instrumentation.

Mutation testing (Pezzè et al. 2007) and testing MRs with mutation tests are conducted

separately. The test evaluation result is used as a reference to examine the adequacy of tests

and MRs, guide iterative test generation and MR development, and analyze defects in the

SUT. The program coverage criteria that are evaluated in this research include: statement

coverage, definition-use pair coverage, function coverage, branch coverage. Statement

coverage measures the percentage of statements that are executed by a test suite. Defini-

tion-use pair coverage measures the percentage of definition-use pairs that have been

exercised by a test suite to all definition-use pairs in the SUT. Function coverage measures

the percentage of functions that are executed by a test suite to all functions in the SUT.

Branch coverage measures the percentage of branches from all decision points that are

executed by a test suite to all branches in the SUT. Mutation testing measures the per-

centage of mutants that are killed by a test to all mutants that are instrumented in the SUT.

Because the correctness of an individual output of a ‘‘non-testable’’ program is unknown,

mutation testing suffers more serious problem of the equivalent of mutants in MT. It is

1: public int getMid
 (int x1,int x2,int x3){
2: int t = 0;
3: if (x1 > x2){
4: t = x1;
5: x1 = x2;
6: x2 = t;
7: }
8: if (x2 > x3){
9: t = x1;
10: x2 = x3;
11: x3 = t;
12: }
13: if (x1 > x2){
14: t = x1;
15: x1 = x2;
16: x2 = t;
17: }
18: return x2;
19: }

Fig. 1 Program getMid

Software Qual J (2017) 25:841–869 843

123

much more difficult to determine whether a mutant is killed by an MR in MT. Therefore,

the status of ‘‘weakly killed’’ is defined in this paper. If the outputs of the original SUT and

the mutated one of a test are different, the mutant is counted as weakly killed even it was

not killed by any MR. Testing MRs with mutation tests means each MR is tested with tests

that violate the relation. It is a type of negative testing for evaluating the quality of MRs.

For each MR, at least one mutation test set that violates the MR is created and tested. The

adequacy of tests means each test adequacy criterion is 100 % covered by the tests, and the

adequacy of MRs means the MRs are able to produce adequate tests. Although the sub-

sumed relations exists among statement coverage, function coverage, and branch coverage,

the coverage evaluation results in different criteria that can be used for test analysis at

different levels. For example, the adequacy of the branch coverage subsumes the adequacy

of the function coverage, but the adequacy of the function coverage often offers a quick

feedback of the test effectiveness. Several techniques for evaluating the adequacy of

program coverage have been reported (Ding et al. 2009); (Zhu et al. 1997); (Zhu and He

2002). In this paper, program coverage is automatically evaluated at runtime, but both

mutation testing and testing MRs with mutation tests are evaluated manually. We explain

the process and idea of the proposed MT technique monitored by test adequacy evaluation

in an example of testing on a medical image processing program, which is a small ‘‘non-

testable’’ scientific program for constructing the 3-dimensional (3D) structure of a biology

cell based on a stack confocal image sections of the cell (Ding et al. 2010). The effec-

tiveness of the technique is further demonstrated by a case study of testing a large scientific

software system: a Monte Carlo simulation program for modeling photon propagation in

biological tissue for accurate and efficient generation of reflectance images from turbid

tissue phantoms (Chen et al. 2007).

The contributions of this paper are summarized as follows: (1) Developed a framework

for the enhancement of MT with demonstration through an example. The framework

includes a set of test adequacy criteria and a procedure for evaluating the adequacy of MT

and an approach for iteratively developing adequate MRs and tests guided by test adequacy

evaluation results. (2) Conducted a case study of the framework on a Monte Carlo sim-

ulation program, which is a representative ‘‘non-testable’’ scientific program with common

characteristics of scientific software. The framework can be easily extended for testing

similar programs. We discovered a defect in the program and found the cause guided by

the test adequacy evaluation result. The case study results demonstrated that the MT

monitored by test adequacy is an effective approach for testing scientific software. (3) The

approach and process for the development of MRs, test adequacy evaluation, and test

generation proposed in this paper can be used for testing other complex software systems.

The rest of the paper is organized as follows. In Sect. 2, we present the MT monitored

by test adequacy with a running example, which is an image processing program. In

Sect. 3, we describe the case study of testing a Monte Carlo simulation program using the

proposed MT. The related work is discussed in Sect. 4, and the paper is concluded in

Sect. 5.

2 MT monitored by test adequacy

In this section, we explain the procedure of the MT monitored by test adequacy through

testing an image processing program for reconstructing the 3D structure of a biology cell

based on its confocal image sections. The confocal image sections are taken along z-axis

844 Software Qual J (2017) 25:841–869

123

with a step size of 5 lm between image sections using a confocal microscope. A confocal

microscope places a spatial pinhole at the back focal plane of the objective lens to elim-

inate out-of-focus light so that the depth of field of the image will be extremely short less

than 1 lm in order to acquire high resolution and high contrast images, which enable the

reconstruction of the 3D structure from the obtained images (Confocal microscope et al.

2016). The cell is stained with two fluorescence dyes so that two cellular organelles of

nucleus and mitochondria are shown in different color channels. For example, the nuclear

is in red, and cytoplasm is in light green and mitochondria are in bright green as shown in

Fig. 2. Each image section is processed with pattern recognition algorithms to segment the

stained organelle such as nucleus, cytoplasm, and mitochondria from each other. The 3D

structure of a cell is reconstructed based on the processed image sections. The morphology

parameters of nucleus, cytoplasm, and mitochondria are calculated based on the recon-

structed 3D structure. Figure 2 shows a sample input and output of the program, where the

input showing in the left panel consists of several confocal image sections of a cell, the one

showing in the right bottom is a segmented image section with red for nucleus, blue for

mitochondria, and green for cytoplasm, and a sectional view of a 3D reconstructed

structure of a cell is shown at top right. We use the software component for processing

mitochondria and building 3D structures of mitochondria in the program as an example

here to explain the MT procedure. As shown in Fig. 3, the testing process consists of an

iterative sequence of activities including identification of MRs, test generation, test exe-

cuting, and test adequacy evaluation.

2.1 Identification of MRs

Testing the software component for reconstructing 3D structures of mitochondria in the

image processing program is complex because each cell has many mitochondria in dif-

ferent shapes and sizes. It is hard to find a test oracle to check whether a reconstructed 3D

structure of a mitochondrion is same as those of a real cell structure. Guided by the prior

experiences (Mayer and Guderlei 2006; Murphy et al. 2008; Murphy et al. 2009; Xie et al.

2011) and domain knowledge in biomedical image processing, we first identify an initial

set of MRs and then create a set of initial test (or called source tests), which are a set of

confocal image sections. Based on the identified MRs and source tests, follow-up tests are

created through editing mitochondria in confocal image sections of the source tests. Paired

source tests and follow-up tests are used together to test the program through checking the

satisfaction of each MR. Six MRs are first identified based on the general guideline for

identifying MRs (Mayer and Guderlei 2006; Murphy et al. 2008):

Fig. 2 Left panel is confocal
image sections of a cell. The top
right image is a sectional view of
a 3D cell structure, and the right
bottom one is a processed image
section

Software Qual J (2017) 25:841–869 845

123

MR1: Inclusive The program first draws the contour line of each mitochondrial cluster

containing one or multiple mitochondria in every confocal image section and then builds a

3D structure through connecting the contour lines of the same mitochondrial cluster in

adjacent image sections. If an artificial mitochondrial cluster is added to original confocal

image sections, the added one should be recognized and constructed, the total number of

mitochondrial cluster should be increased by one, and the calculated volume of the

mitochondria in the cell should be increased correspondingly. We first add one artificial

mitochondrial cluster to only one image section, and then the same mitochondrial cluster

can be added to multiple image sections (i.e., the mitochondrion is sufficiently large that it

crosses multiple image sections). Modification of the input images is completed with a

MATLAB code, and each modified image is visually inspected to ensure that it does not

produce unexpected results.

MR2: Exclusive A mitochondrial cluster is removed from the original confocal image

sections. Since the same cluster may appear in multiple adjacent image sections, it has to

be completely removed from all of these image sections. Then, the removed cluster should

not appear in the processed image sections or in the reconstructed 3D structure output. The

total number of the mitochondrial clusters should be decreased by one, and the volume of

mitochondria is expected to be decreased.

MR3: Multiplicative The size of a mitochondrial cluster is enlarged with a small per-

centage from the original confocal image sections. Since the same cluster may appear in

multiple image sections, the same percentage of increasing is applied to the cluster at every

image section. Then, we calculate whether the size of the mitochondrion is increased in the

processed image sections and in the reconstructed 3D structure output. The total number of

the mitochondrial clusters should be kept as the same, and the volume of mitochondria is

expected to be increased.

MR4: Additive An artificial mitochondrial cluster is added to an image section that

would extend an original mitochondrial cluster in adjacent image sections. The artificial

Select test coverage
criteria

Identify an MR

Guidelines for
identifying MRs

Domain
knowledge

Generate tests

Test system with
tests

Analyze system
correctness

Modify system

need
more
tests

Analyze test
adequacy

need
more
MRs

defects found

Fig. 3 Process of the metamorphic testing monitored by test adequacy

846 Software Qual J (2017) 25:841–869

123

cluster is supposed to be connected to one end of the original one and we expect the

original cluster is extended with the artificial one. The total number of the mitochondrial

clusters in the reconstructed 3D structure output should be kept as the same, but the volume

of mitochondria is expected to be increased.

MR5: Permutative The positions of two mitochondrial clusters are exchanged at the

same time in all confocal image sections they appear. During execution, it is necessary to

make sure that the exchange will not affect the rebuilding of other mitochondrial clusters.

The total number of clusters and volume of the mitochondria in the reconstructed 3D

structure output should be kept as the same.

MR6: Invertive Chose one mitochondrial clusters that exists in multiple image section,

and then invert the mitochondria in these images (i.e., turn 180o of these images all

together). It is important that the inversion will not affect the rebuilding of other mito-

chondria. The total number of clusters and the volume of the mitochondria in the recon-

structed 3D structure output should be kept as the same.

Then, based on the domain knowledge of cell image processing, three additional MRs

are developed:

MR7: Lengths Each confocal image section is taken at a different z-axis position of a

cell. A small mitochondrion or a small cluster may only appear in one image section due to

the gap between adjacent image sections is larger than the size of the mitochondrion, and a

large one may appear in multiple adjacent image sections. Based on this observation, if an

artificial mitochondrion is added to only one image section, then the 3D structure of the

added mitochondrion should be built only based on the added mitochondrion. The newly

added mitochondrion is expected to appear in the corresponding processed image section

and in the 3D structure output, and the volume of mitochondria is expected to be increased.

When the same artificial mitochondrion or cluster is added to two or more adjacent image

sections, it is important to check that the 3D structure of the added mitochondrion or

cluster can be constructed based on these adjacent image sections. These adjacent sections

can be checked by a MATLAB program to ensure the newly added artificial cluster in the

image sections will build the same mitochondrion. These image sections and only these

image sections should be used to construct the 3D structure of the newly added mito-

chondrion. The newly added mitochondrion or cluster is expected to appear in the 3D

structure output along with the original mitochondria, and the volume of mitochondria will

be increased.

MR8: Shapes Mitochondria may have different shapes in the confocal image sections,

and the shapes of mitochondria determine the shape of the 3D structure of a reconstructed

mitochondrion. Artificial mitochondria with different shapes are added to the confocal

images to check whether the 3D structures of these new mitochondria can be constructed as

expected, and the 3D structures of other original mitochondria should not be affected.

MR9: Locations The program processes the mitochondria that are close to the nuclear

differently to those that are close to the cell membrane. Artificial mitochondria are added to

the images in different locations, such as the location where is close to the nuclear or where

is close to the cell boundary. The new added mitochondria should be recognized, and the

3D structure of the added mitochondria should be reconstructed as expected and the 3D

structures of other original mitochondria should not be affected.

The 9 MRs cover many cases of 3D reconstruction of mitochondria, and they are

expected to serve sufficiently as the initial set of MRs. The next step is to create tests based

on the identified MRs.

Software Qual J (2017) 25:841–869 847

123

2.2 Metamorphic test generation

Each MT test consists of a source test and its follow-up tests, which are produced through

transforming the source test according to an MR. The source tests can be created using

regular test generation techniques such as program-based, specification-based, combina-

torial technique, or random test generation. For each MR, enough tests should be created to

adequately cover selected test adequacy criteria. All MT tests are executed one by one, and

their outputs are compared according to related MRs to decide whether the SUT passes or

fails a test. One way to producing tests is to create tests for each MR independently. For

example, for MR1, one can choose a stack of confocal image sections of a cell and then

add an artificial mitochondrion in one or multiple image sections. For each test, a different

mitochondrion is added, and these mitochondria might be different in size, shape, length,

and position. The same idea can be used for producing tests for all other MRs. Another way

to producing tests is to use combinatorial technique (Nie and Leung 2011). In this example,

two parameters can be defined for the combinatorial test generation. Parameter1 includes

fields {MR1, MR2, ……, M6}, and parameter2 includes fields {MR7, MR8, MR9}. Then,

pairwise combinations can be applied for producing tests based on the elements of pa-

rameter1 x parameter2. For example, tests can be produced based on MR3 x MR7, and

tests should be created through resizing mitochondria with different lengths. Tests are

created through resizing mitochondria in different positions if the combination is on

MR3 9MR7.

2.3 Test adequacy evaluation

When a SUT is executed with tests, the outputs and test adequacy evaluation results are

observed and recorded for further analysis. If an output violates an MR, the SUT must have

defects. If no MR violation is found, then test adequacy is analyzed to determine whether

new tests or even new MRs should be developed. The test adequacy evaluation result is

also useful for locating defects. For example, the evaluation result of test criteria could be

used for detecting an invalidity of a test input or an enormity of an execution path. Because

a test input such as an image could be very large or structurally complex, the SUT cannot

fully validate it. In many cases, a test output from an invalid input may still satisfy an MR

due the weakness of the MR. The test evaluation results can flag the ‘‘false positive’’ based

on unusual coverage information. For example, an output satisfying an MR but with only 1

percent of statement coverage shall flag some problem in the program or the test. In

addition, the evaluation of program coverages can improve our understanding of the

program execution and detect enormities in execution paths.

Three program coverage criteria are checked when testing the image processing pro-

gram: function coverage, statement coverage, and def-use pair coverage. In addition,

partial mutation testing is conducted. MR- and MR-related tests should adequately cover

these criteria and kill or weakly kill all mutants. If a test suite does not adequately cover a

criterion, new tests are created guiding by the adequacy evaluation results to improve the

test coverage. If 100 percent coverage (or expected threshold) of a criterion cannot be

reached through adding new tests, then new MRs that may produce adequate tests should

be developed. Code for evaluating the adequacy of coverage criteria is instrumented into

the SUT to automate the evaluation at runtime. For statement coverage, a checking

statement is added immediately before every statement in the program. For function

coverage, a checking statement is added immediately before every normal return statement

848 Software Qual J (2017) 25:841–869

123

in the function to be checked. For def-use pair coverage, one statement is added imme-

diately after the definition statement, and the other statement is added immediately after

each corresponding use statement. For branch coverage, checking statement is added

immediately before the first statement in every branch that is decided by a decision point.

During program execution, results from these checking statements are output to an XML

file for runtime and offline analysis.

The effectiveness of MT is measured by the adequacy of program coverage criteria. In

addition, mutation testing is also conducted to evaluate the test effectiveness. Ideally, we

should create a group of mutants for each MR. However, it is very difficult to know in

advance how does a mutant affect an MR in a ‘‘non-testable’’ program due to the equiv-

alent of mutants, which is much worse in MT than regular testing. For example, MR larger

may not be sensitive to mutants created from changing of constants in a SUT. Therefore, a

modified mutation testing is used in this research. In the past few years, significant research

has been performed on mutation testing, and many mutation tools have been developed (Jia

and Harman 2011). For example, a group of mutation operators were proposed to generate

mutants for testing Java programs (Obayashi et al. 1998). When we testing the image

processing program, mutants are created manually following general mutation testing

practices in addition to domain knowledge. The effectiveness of the testing is evaluated

based on the percentage of mutants that are killed. If a mutant was not killed by any of the

tests, then new tests or new MRs should be developed until the mutant is killed. Some

mutants will never be killed regardless of the tests or MRs. In this case, if a test output

cannot be killed by any MR, but the test outputs from the mutated program and the original

one are different, then the mutant is counted as weakly killed. If a mutant is weakly killed,

inspection is needed to check is there any potential problem in the program. If a mutant

cannot be killed or even weakly killed, other testing methods such as the function level MT

(Murphy 2010) or analytic methods could be conducted. If all mutants are killed or weakly

killed, then it is necessary to check whether these mutants are uniformly killed, which

means each MR killed similar number of mutants. If the tests of an MR do not kill any

mutant, more mutants should be added to the program to make sure the tests generated

from the MR can kill significant number of mutants. Generally, it is difficult to guarantee

tests from an MR can kill particular mutants. One example mutant we added for testing the

image processing program was applied to the function that is used for smoothing the

connection of the contour lines between adjacent image sections in the 3D reconstruction

module. If the difference of the mitochondrion shapes between two adjacent image sections

is over a limit, the smoothing function is called to smooth the connection lines, which form

the boundary of the 3D mitochondrion. Instead, the mutant skips the smoothing function at

all. The difference between smoothed connection and the non-smoothed connection may

not be easily detected in the 3D structure output by eyes. The number and volume of the

mitochondria calculated from the program would not violate any MR. Therefore, the

mutant cannot be killed. However, the mutant is easily killed by checking the function and

statement coverages due to the inadequacy of function coverage. To simplify the mutation

testing, each mutant is tested independently.

It is relatively easy to create mutation tests for evaluating each MR in this case. For

example, one can create mutation tests for testing MR1 through adding and removing same

number of mitochondria at the same time, and then, we expect the number of mitochondria

in the reconstructed structure would not be changed, which violates MR1. It shows that

MR1 is a qualified MR for testing the program since they only can be satisfied by carefully

selected tests.

Software Qual J (2017) 25:841–869 849

123

2.4 Iterative development of adequate tests and MRs

The major purpose of test adequacy evaluation in the MT is to help testers iteratively

develop adequate tests. If adequate tests cannot be developed based on existing MRs, new

MRs are needed to be identified for creating more tests. Here, we propose a set of

guidelines for iteratively developing adequate tests and MRs guiding by test adequacy

evaluation results. We describe the guidelines for each type of criteria separately. It is

desirable that the tests of each MR can adequately cover every test coverage criterion. If

the tests of an individual MR cannot adequately cover all adequacy criteria, it is accept-

able if the tests from all MRs together can do it. We classify the test adequacy criteria into

three categories: 1. Program-based criteria such as statement coverage and condition

coverage; 2. Mutation testing-based criteria; and 3. MR-related criteria.

1 Program-based criteria It is a basic requirement that MR tests can adequately cover

control flow-based coverage criteria and data flow-based coverage criteria. Specifi-

cally, we discuss the evaluation of evaluate Statement Coverage, Function Coverage,

Branch Coverage and Def-Use Pair Coverage. If a statement, branch or a function is

not covered by any test, some condition in the program is not be covered by any test.

However, producing tests for covering all conditions in a program is not an easy work.

General test generation strategies such combinational technique, dynamic symbolic

execution, category-based test generation, or boundary-based test generation should be

used to produce more tests to see whether the new tests can cover the specific

conditions. If additional tests cannot improve the coverage, more MRs should be

created or some existing MRs should be refined with guiding by the missing conditions

in mind.

Evaluation of the control flow-based coverages offers not only a measurement of the

test quality but also a sign of problems in some program sections. In the case study, we

will show how the evaluation results help us to find a bug in a program. Checking the

adequacy of def-use pair coverage is necessary for testing programs that include heavy

data processing. The image processing program discussed in this paper is such an

example. If the def of a def-use pair is not covered by any test, but the corresponding

use is covered, the program must have some problem. If the def of a def-use pair is

covered by a test, but the corresponding use is not covered, then it is still the condition

coverage problem. The test generation techniques we just talked can be used to create

tests and MRs for adequately covering def-use pairs.

2 Mutation Testing A basic requirement for mutation testing in MT is all tests together

should kill or weakly kill all mutants and the test set of each MR should kill or weakly

kill some different mutants. A simple way to create a test for killing a mutant is

described as follows. First, a pair of MR-related tests such as tc1 and tc’1 is selected,

and then, tc1 and tc’1 is tested under the normal program p. We record the program

outputs r1 and r’1 of tc1 and tc’1 as: r1 = p(tc1), r’1 = p(tc’1), respectively. Then, run

test tc1 and tc’1 under the mutated program pm that has mutant mt, and record the

program outputs r2 and r’2 of tc1 and tc’1 as: r2 = pm(tc1), r’2 = pm(tc’1), respectively.

If mutant mt was not killed, both (r1, r’1) and (r2, r’2) should satisfy their related MR

such as mr1. The differences between r1 and r2, r’1 and r’2, are represented as

d = r1-r2 and d’ = r’1-r’2, respectively, where represents the difference. If (d, d’)

still satisfy mr1, then no any test of mr1 can kill mutant mt since the mutant causes a

systematic shifting of the result from the original program. For example, given a

mutant that is to change x2 at line 18 in Fig. 1 into x1, then both outputs of test inputs

850 Software Qual J (2017) 25:841–869

123

\3, 2, 5[and\5, 2, 3[from the original program are 3, and the outputs of the same

test inputs from the mutated program is 2. The relation (d, d’) is (3-2, 3-2), which still

satisfies MR permutation and cannot kill the mutant. If the output of a test from the

original program and the mutated program is different such as above case, then we

considered mutant mt be weakly killed. Otherwise, it is necessary to create new tests

for killing mutant mt. Based on (d, d’), (tc1, tc1’), and MR mr1, in addition to the

reference of test coverage results, it is possible to create a new test (tcnew, tcnew’) for

killing the mutant. If additional tests from current MRs cannot kill or weakly kill

mutant mt, new MR and tests should be developed.

3 Testing with mutation tests As soon as a SUT passes all tests, a set of mutation tests are

created for evaluating the quality of each MR. A set of mutation tests consist of a

group of test inputs whose outputs would violate the MR under evaluation, and they

are created from mutation of current tests that satisfy the MR. The purpose of testing

the SUT with mutation tests is to exclude the MR that is so general that can be hold by

all tests and to ensure an MR can differentiate positive test inputs from negative ones.

Producing mutation tests for a MR is an iterative experimental process. For each MR,

at least one test set that violates the relation should be produced and tested. If an MR

satisfies a mutation test, then the MR is too weak or something must be wrong with the

MR or the tests.

Based on above discussion, we summarize the MT monitored by test adequacy eval-

uation as follows:

1. Development of initial MRs and tests Based on domain knowledge of the SUT and

general framework of MT (Mayer and Guderlei 2006), one can develop a set of MRs.

Based on general test generation strategies such as combinatorial technique, category-

based or random approach, one produces source tests and follow-up tests for each MR.

2. Test evaluation As soon as the SUT passes all tests, tests created for mutations of MRs

are used for checking the quality of MRs. The effectiveness of the test is then

evaluated with selected test coverage criteria and mutation testing. A mutant should be

killed or weakly killed by a test.

3. Refinement of MRs It is the process for creating test oracles, which can be developed

through refining current MRs or defining new MRs. For example, if simply adding new

tests based on current MRs cannot reach 100 percent coverage of the selected test

coverage criteria, new MRs should be created or current MRs should be refined until

their tests can adequately cover the criteria. If a mutation test satisfies an MR, then the

MR should be refined to ensure the MR strong enough to find the violation. Machine

learning of testing results and test evaluation data has the great potential for

developing adequate MRs (Ding and Zhang 2016).

2.5 Discussion

The advantages of the proposed MT can be summarized as follows: (1) Using test coverage

information for selecting MRs. The test adequacy evaluation provides a way to measure the

quality of selected MRs. It helps testers to develop MRs and determine whether the MRs

are adequate for the testing. The test adequacy criteria include program-based coverage

criteria, mutation testing, and testing each MR with mutation tests. Mining test evaluation

results and testing data for developing high quality MRs is a new direction for MT. (2)

Using test coverage information for generating tests. Satisfaction of an MR in MT

Software Qual J (2017) 25:841–869 851

123

provides little useful information neither on the SUT nor on the testing process. If a test

adequacy criterion cannot be adequately covered by current tests, more tests or even new

MRs are needed. The test adequacy evaluation results help testers create specific tests and

MRs to improve the coverage. (3) Test coverage information may flag defects in SUT. The

coverage difference of a group of tests generated from the same MR may flag defects in the

SUT. For example, if two tests are produced for the same MR with significant test cov-

erages such as one test covers 90 percent of statements, and the other covers only 45

percent, then the difference may flag some defects in the program or the test inputs.

3 Case study

In this section, we discuss an empirical study of testing a parallel Monte Carlo simulation

program developed in Biomedical Laser Laboratory at East Carolina University. The

program aims at accurate and efficient modeling of reflectance images from turbid tissue

phantoms. More information on the application of the program can be found in a previous

publication (Chen et al. 2007). Monte Carlo methods, due to their nature of balancing

between algorithm accuracy and computing complexity, have been widely used to simulate

light transportation in either homogeneous or heterogeneous turbid media (Kanewala et al.

2015; Le et al. 2014; Pezzè et al. 2007; Shan and Zhu 2009). It involves the stochastic

techniques in which random numbers with desired probability distributions are used to

model light propagation and interaction in the turbid media that are characterized by the

specific optical properties of the system under investigation. The statistical property of the

Monte Carlo algorithm enables easy adaptation for problems with irregularly shaped

structures and boundaries, which are difficult for numerical approaches. As a general

statistical approach, however, the Monte Carlo simulation normally requires tracking a

large number of photons (107 to 109 in this case study) in order to achieve reasonable

variance. The simulation consumes a lot of computational time, which tends to be a barrier

to practical applications. Fortunately, this problem can be alleviated by a parallel com-

puting algorithm since the tracings of individual photons are independent processes

according to radiative transfer theory (Arridge 1999). Adequately, testing the Monte Carlo

program is a grand challenge due to the absence of test oracles. The tracking of each

photon in the program is controlled by random numbers so that the precise result of each

simulation is unknown. The three most widely used approaches, Beer-Lambert law (Ar-

ridge 1999; van de Hulst’s table Weyuker 1982 and RTE Arridge 1999) can be used as

oracles for testing the special cases that simulate photon propagation in homogeneous

media. The Monte Carlo program discussed in this case study is for modeling both

homogenous and heterogeneous turbid media, where photons propagate in different media

such the one illustrated in Fig. 4a. Of course, one can test the program by comparing a

Monte Carlo simulation result to an experiment result. However, building an experimental

facility as same as the configuration of the Monte Carlo simulation is often expensive and

time-consuming, which is the exact reason to build the Monte Carlo simulation program.

This is a common character of many scientific software: using the simulation software to

replace the physical experiment study. Traditional software testing techniques cannot

adequately test the Monte Carlo program. Therefore, MT monitored by test adequacy is

used to test the program.

852 Software Qual J (2017) 25:841–869

123

3.1 Monte Carlo modeling of reflectance imaging

The Monte Carlo modeling program in this case study is built for numerical investigation

of the dependence of reflectance image data on the optical and geometric parameters of

heterogeneous tissue phantoms under the condition of full-field illumination. To simulate

the light distribution reflected from a heterogeneous tissue phantom, different regions in

the phantom are assigned with different sets of optical parameters as shown in Fig. 4a. In

Fig. 4a, the diameter of the incident light beam is 2w, the incident light angle is h0, h is the

height of the camera lens, d is the diameter of the camera lens, 2a defines the Field Of

View (FOV), which defines the angular range of reflected photons to be captured by the

camera lens, T is the thickness of the host phantom, D and B are the thickness and diameter

of the cylindrically shaped and embedded phantom, respectively. (la1, ls1, g1, n1) and (la2,
ls2, g2, n2) are the optical parameters to characterize, respectively, the two phantom

regions: the absorption coefficient, scattering coefficient, anisotropy factor, and refractive

index. For semi-infinite (only considering z C 0) homogeneous phantoms, we let T ? ?
and (in simulations, T = 100 mm) D = B=0 mm for the insert (Chen et al. 2007). The

Monte Carlo simulation program considers a homogeneous phantom or a heterogeneous

phantom in air with one embedded region of optical parameters different from its semi-

infinite host. The independent tracking of photons makes Monte Carlo simulations ideal for

parallel computing. The program employed Message Passing Interface (MPI) for paral-

lelization of the sequential Monte Carlo code. The random numbers used in the Monte

Carlo simulation are generated independently and uniformly between 0 and 1 for

describing the random events of light scattering and absorption. Hundred or more random

numbers per tracked photon in most cases here are required in a simulation. The random

events in the photon tracking process are sorted into different types according to the nature

of the light tissue interaction such as the scattering, absorption, and reflection from or

refraction through an interface. To ensure the randomness for accurate Monte Carlo

modeling on the basis of ergodic hypothesis, it is necessary to assign each type of random

events a unique sequence of random numbers. Therefore, several independent random

number sequences coexist in a Monte Carlo simulation (Chen et al. 2007).

Just like other scientific software, it is difficult to adequately test the Monte Carlo

program since one cannot predict the result of a simulation with an input configuration

similar to the one shown in Fig. 4b. In fact, that is the knowledge we try to learn from the

(a) (b) (c)

#n1 mua mus g d
1.4 0.2 3.0 0.6 8.8
#n2 mua mus g x y z r h
1.4 0.6 1.5 0.7 0.0 0.0 0.575 4.0 1.15
#angle x0 y0
40 0 0
radius distance (len)
10 100
albedo
0.7143

Fig. 4 a Configuration of the simulation for acquisition of spatially resolved images (Chen et al. 2007);
b Partial of the input file of the simulation program; and c 6 simulated reflectance images obtained with
different optical parameters

Software Qual J (2017) 25:841–869 853

123

modeling. According to the discussion above, it is also very hard to use other algorithms to

yield suitable test oracles and indicate the expected output for a certain input. It is either

very time-consuming or even worse in most cases—no alternative algorithm is available to

generate reliable test oracles for the modeling, especially, for the system with irregular-

shaped elements or complex boundary conditions, which probably happens all the time

while modeling the real-world problem. An output of the Monte Carlo program is a

reflectance image as those shown in Fig. 4c.

3.2 Program structure

The Monte Carlo simulation program was developed using Fortran 90 with an MPI library

(Pacheco 1996). The program contains five source files. Monte_main.f90 is the main

program including the code calling the MPI functions; Monte_go.f90 includes the sub-

routines and functions to check if a photon hits different optical boundaries in the turbid

medium and record current photon status and position. Monte_sub.f90 is the module of

utility subroutines that do the calculation in the simulation. Monte_io.f90 is the file for

input/output subroutines; Monte_define.f90 contains definitions of objects and constants.

The program has 46 subroutines or functions, and total about 1600 lines of Fortran 90 code,

which does not include third party software like random generators.

3.3 Experiment setup

Each test was carried out on a computing cluster of 4 nodes (PowerEdge 1750, Dell) with a

total of 8 process elements (Xeon 3.06 GHZ CPU). Intel MPI library was used as the

message passing interface. Two structural test coverage criteria, function coverage and

branch coverage, were checked for all subroutines and modules in the program. In order to

reduce the variance in the simulation, averaged reflectance curve R(x,0) was calculated by

the photon density along the y-axis over three rows of grid cells on each side of the x-axis.

The contrast C of a reflectance image is calculated based on the intensity (i.e., the unsigned

value of a pixel) of each pixel in the image. The MRs selected in this research originated

from the results validated in (Chen et al. 2007). In the Monte Carlo program, different

configurations of the simulation are carefully set as the test inputs and the relations among

the outputs of those configurations are established according to optical knowledge. We

assumed the relations established in (Chen et al. 2007) are valid so that we can conduct

MT, and the initial MRs were developed based on the relations.

3.4 Test execution

3.4.1 Identification of MRs

We first identify a set of MRs based on domain knowledge and general guidelines. The

input parameters to the Monte Carlo program are the simulation configuration like the one

shown in Fig. 4b and the configuration of incident light beam, which includes thousands of

datum items produced by experiments. We do not change the light incident beam con-

figuration except its angle h0. When the light beam angle is changed, the corresponding

light configuration can be simply calculated based on the original light configuration.

Therefore, we do not test the program with different incident light beams except different

light beam angles. The output of a simulation is the number of backscattered photons

854 Software Qual J (2017) 25:841–869

123

divided by that of the incident photons as the intensity of each pixel within the FOV

captured by the camera lens, which produces a gray level image. It is infeasible to define an

MR for an input parameter and the individual pixel values of the output reflectance image.

Instead, we define MRs for the input parameters and selected properties of the output

image. The input parameters we consider first include refractive index n, anisotropy factor

g, numerical aperture NA (NA = sina, where a is the angel of FOV), incident light beam

angle h0, and albedo a, which given by ls/(la ? ls)). The input parameters cover all major

parameters in the simulation configuration. The correlation between the parameters and the

simulated reflectance image is also the purpose for building the program. Since the

phantom in the simulation configuration is the object we investigate in the simulation,

parameters of the media around the phantom will not be considered. The properties of the

output image include the image contrast C and reflectance curve R(x, 0), both of them are

defined in Sect. 3.3. The ideal scenario is that we create MRs based on combinations of

input and output parameters. However, we only know some of the relations based on

theoretical and experiment results. Five MRs are first defined based on the experiment

results that have been published (Chen et al. 2007). The five MRs are defined as follows:

1. MR1: Contrast C value decreases when refractive index n2 value increases.

2. MR2: Contrast C value decreases when anisotropy factor g2 value increases.

3. MR3: Contrast C value increases when albedo a2 value increases.

4. MR4: For each pixel along the x-axis on the image, the averaged reflectance curve R(x,

0) decreases if the numerical aperture (NA) decreases.

5. MR5: For each pixel along the x-axis on the image, the averaged reflectance curve R(x,

0) decreases if the incident light angle h0 increases.

These properties are based on experimental results, and they were not defined in the

program specification or explicitly implemented in the Monte Carlo simulation program. In

this perspective, MT the program with these properties is conducted for validation of the

program (Zhou et al. 2009).

3.4.2 Test generation

For each MR, at least two test sets with different optical parameters were crossly validated

to lower the possibility that the MR was satisfied accidentally by special inputs. Cross-

validation alone is not enough to ensure the testing quality, instead additional test adequacy

evaluation such as mutation testing is needed (Xie et al. 2011). Each test set contained at

least four tests that satisfy the MR. These tests include boundary values that are uniformly

distributed within the valid value range of the parameter. For example, the 4 values

selected for test set 1 of MR1 is 1.36, 1.40, 1.44 and 1.48 with the valid value range

between 1.0 and 1.5 of reflective index n2. The test results of the second test set are not

presented in this paper as long as the test results are consistent to the one of the first test set.

For the same reason, the detailed configuration inputs are skipped except tests for MR1.

We only describe the parameters that are needed for the testing.

3.4.3 Testing results

(1) MR1 Contrast C value decreases when refractive index n2 value increases.

Test Set 1: N0 = 1.13*108, light incident angle h0 = 30.0�, height of collection

lens = 0.0 mm. Phantom: la1 = 0.30 mm-1, ls1 = 5.50 mm-1, g1 = 0.8, n1 = 1.40,

Software Qual J (2017) 25:841–869 855

123

T = 100 mm. Embedded Cylinder: la2 = 0.15 mm-1, ls2 = 6.00 mm-1, g2 = 0.8,

D = 0.75 mm, B = 8 mm, Cylinder center position (x, y, z) = (0.0 mm, 0.0 mm,

0.375 mm). The n2 of the four tests are set as 1.36, 1.40, 1.44, and 1.48. The simulation

results and test adequacy evaluation results are shown in Table 1.

Fun-go, Fun-sub, and Fun-io are the coverage of all functions or routines in module

monte_go, monte_sub, and monte_io, respectively. Branch-go, Branch-sub, and Branch-io

is the coverage of all branches in module monte_go, monte_sub, and monte_io, respec-

tively. The results of contrast C versus n2 are plotted as shown in Fig. 5. The figure was

visually inspected to decide whether the test results satisfy MR1. As the conclusion, the

test results of test set 1 satisfy MR1. If we add test inputs to cover the exception handling

code, then all branches will be covered. Tests for covering exception handling were not

considered for MR1, same for other MRs.

(2) MR2 Contrast C value decreases when anisotropy factor g2 value increases.

The values of g2 of the four tests are set as 0.1, 0.3, 0.6, and 0.9. The results of contrast

C versus g2 are plotted as shown in Fig. 6, and the test results satisfy MR2. All branches

except the exception handling and all functions are covered by the tests.

(3) MR3 Contrast C value increases when albedo a2 value increases.

The values of la2 of the four tests are set as 0.2, 1.00, 2.5, and 5.00 mm-1, respectively.

All branches except the exception handling code and all functions are covered by the tests.

The results of contrast C versus a2 are plotted as shown in Fig. 7, and the test results satisfy
MR3.

(4) MR4 For each pixel along the x-axis on the image, the averaged reflectance curve

R(x,0) decreases if the numerical aperture (NA) decreases.

The height of collection lens of the four tests are set as 0.00, 3.35, 12.50, and 46.65 mm,

which make the numerical aperture (NA) as 1.000, 0.966, 0.707, and 0.259, respectively.

The simulation results and test adequacy evaluation are shown in Table 2. As shown in

Table 2, some of the branches were not covered by the tests. But after we added new test

with the lens height as 50.00 mm, all branches except the exception handling code and all

functions are covered by the tests. The results of averaged curves of R(x,0) versus x are

plotted as shown in Fig. 8, and we can conclude that the test results satisfy MR4 via

visually inspecting all Figures

5) MR5 For each pixel along the x-axis on the image, the averaged reflectance curve

R(x,0) decreases if the incident light angle h0 increases.

The incident light angles h0 of the four tests are set as 0, 15, 45, 75�, respectively. All
branches except the exception handling code and all functions are covered by the tests. The

Table 1 Testing results of MR1

n2 Contrast
C

Fun-go
(%)

Fun-sub
(%)

Fun-io
(%)

Branch-go
(%)

Branch-sub
(%)

Branch-io
(%)

1.36 0.19589 100 100 100 75.9 60.7 90

1.40 0.175588 100 100 100 74.7 60.7 86.7

1.44 0.162571 100 100 100 76.5 60.7 86.7

1.48 0.148713 100 100 100 76.5 60.7 86.7

856 Software Qual J (2017) 25:841–869

123

contrast C vs. n2

0

0.05

0.1

0.15

0.2

0.25

1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

Refractive Index n2

Co
nt

ra
st

 C

Fig. 5 Contrast C versus refractive index n2

Contrast C vs. g2

0
0.1

0.2
0.3

0.4
0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Anisotropy Factor g2

C
on

tr
as

t C

Fig. 6 Contrast C versus anisotropy factor g2

Contrast C vs. Albedo α2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
0.4 0.5 0.6 0.7 0.8 0.9 1

 Albedo α2

C
on

tr
as

t C

Fig. 7 Contrast C versus albedo a2 value

Table 2 Testing results of MR4

h(mm) NA Fun-go
(%)

Fun-sub
(%)

Fun-io
(%)

Branch-go
(%)

Branch-sub
(%)

Branch-io
(%)

0.00 1.000 100 100 100 73.5 60.7 86.7

3.35 0.966 100 100 100 73.5 60.7 86.7

12.50 0.707 100 100 100 73.5 60.7 86.7

46.65 0.259 100 100 100 73.5 60.7 86.7

Software Qual J (2017) 25:841–869 857

123

results of R(x,0) versus x are plotted as shown in Fig. 9a, and the figure was visually

inspected to decide whether the MR is satisfied. We found there was no simple linear

relation between averaged reflectance curve R(x,0) and x, which violates MR5 as a

property reported in reference (Chen et al. 2007). The value of R(x,0) at h0 = 45o is larger

than the one at h0 = 75, 15, and 0�. Based on MR5, R(x,0) at h0 = 45� shall larger than the
one at h0 = 75� but smaller than the one at h0 = 15 and 0�.

In order to investigate the problem, we cross-validated several different sets of tests but

could not find any test result that satisfied MR5. However, MR5 could be satisfied with

some special tests, such as h0 = 45, 75� in above test set. The result further confirms that it

is important to evaluate the quality of the tests and their corresponding MRs in order to

minimize the false positive results. From physics knowledge and the configuration of the

simulation, one knows that if MR5 is satisfied in heterogeneous media, then it should be

satisfied in homogenous media as well. Since the code for handling the homogenous media

in the program is a subset of the code for handling the heterogeneous media, we tested

MR5 for homogeneous media to check whether MR5 is satisfied in this special case.

X (mm)
-20 -10 0 10 20

A
ve

ra
ge

d
R

ef
le

ct
an

ce
 R

(x
,0

)

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

NA = 1.000
NA = 0.966
NA = 0.707
NA = 0.259

Fig. 8 Average reflectance R(x,0) versus x

(a) (b)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x (mm)

A
ve

ra
ge

d
R

ef
le

ct
an

ce
 R

(x
,0

)

θ0=75º
θ0=45º
θ0=15º
θ0=0º

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21

x (mm)

A
ve

ra
ge

d
R

ef
le

ct
an

ce
 R

(x
,0

)

θ0=75º
θ0=45º
θ0=15º
θ0=0º

Fig. 9 a Average reflectance R(x, 0) versus x with different incident light angle h0 in heterogeneous media.
The result violates MR5. b Average reflectance R(x,0) versus x with different incident light angle h0 in
homogenous media. The result still violates MR5

858 Software Qual J (2017) 25:841–869

123

The parameters of the embedded cylinder of all tests in the test set were selected as

D = 0.0 mm, B = 0.0 mm, cylinder center position (x, y, z) = (0.0 mm, 0.0 mm,

0.0 mm), and the optical parameters of the cylinder were set as same as the optical

parameters of the phantom. The incident light angles h0 of four tests were still set as 0, 15,
45, and 75�. The test results and test adequacy evaluation are shown in Table 3. The results

of R(x, 0) versus x are plotted as shown in Fig. 9b, and it was visually inspected. It is easy

to see that no simple linear relation between averaged reflectance R(x,0), and x is revealed

for homogeneous media either.

Checking the test coverage results in Table 3, it is not difficult to find that the program

for handling the homogenous media is much simpler than the program for handling the

heterogeneous media. Since Fig. 9a, b have the same pattern, we can narrow the defect

code to the program for processing homogenous media. Several experienced programmers

independently inspected the program for homogenous media (less than 500 lines of code),

and no bug was found. From theory, it is difficult to tell whether MR5 holds or not. One

way to check the validity of MR5 is to build a real experiment environment to test MR5.

However, building the experimental environment that is identical to the configuration of

the Monte Carlo simulation is fairly hard. The scientists who developed the Monte Carlo

model believed MR5 should be correct. Therefore, further investigation is necessary.

Based on the testing results of MR5, we found one important observation: MR5 helps us

narrow the defect scope in the program. For example, the defects should exist in the

program for processing homogenous media because the testing results from program for

processing homogenous media and heterogeneous media have the same pattern. The

observation actually helped us find the defect in the program.

Carefully checking the result shown in Fig. 9a, b, it is not difficult to find that the

phantom defined in the simulation configuration is not shown. Based on the configuration,

the figure should have a valley in the middle representing the phantom defined in the

middle of the configuration. This suggests errors within the program. By analyzing the

program, we found that one statement in the program was hard coded with h0 = 40�
instead of reading the value from an input file (but reading h0 in other places is correct). As
soon as the problem is fixed, the running results of the same test inputs are plotted as

shown in Fig. 10, which satisfies relation MR5. The experiment has again shown the

effectiveness of MT and the importance of MRs for detecting defects. If MR5 were not

selected as an MR for the testing, the defects discovered by MR5 would not be found.

3.5 Test evaluation

The test results in Sect. 3.4.3 show that the test covered all functions, conditions and

statements except exception handling. In this section, we discuss test evaluation with

mutation testing and testing MR with mutation tests.

Table 3 Testing results for MR5 (homogeneous)

h0 (8) Fun-go (%) Fun-sub (%) Fun-io (%) Branch-go (%) Branch-sub (%) Branch-io (%)

0 78.6 100 100 33.7 62.5 86.7

15 78.6 100 100 33.1 57.1 86.7

45 78.6 100 100 33.1 57.1 86.7

75 78.6 100 100 33.1 57.1 86.7

Software Qual J (2017) 25:841–869 859

123

3.5.1 Mutation testing

The test sets used for checking the mutation testing are those generated from MR1 to MR5.

Mutation operators were created for modifying the calculation in the Monte Carlo simu-

lation program, and all mutation operators were only applied to the module monte_go.f90

and the module monte_sub.f90 since they are the main computing modules of the simu-

lation. No mutant affects the validity of tests, and no mutation was applied to the exception

handling code or input and output statements. In addition, no mutant causes any simple

exception or crash during the testing. Mutants were manually instrumented into the pro-

gram, and each mutant was checked separately. Table 4 lists the mutation operators that

were applied to the Monte Carlo program.

There are 11 subroutines and functions in module monte_go.f90 and 13 subroutines and

functions in module monte_sub.f90. We created at least three different types of mutants for

each function or subroutine except two subroutines that only have several lines of simple

statements. Total 150 mutants were created, and each of them was instrumented and tested

separately using the same tests for testing MR1 to MR5. We restricted the value modifi-

cation of each coefficients or constant less than 10 % of the original value, and each

constant added to a formula was less than 10 % of the expected correct result. Float

numbers are rounded to integers if needed. Since 0 or 0.0 normally is very sensitive to any

change, no mutation was applied to them. The results generated from each mutation

program were compared to the results generated from the original program and checked

manually. Majority of mutants were killed, and all of them were weakly killed. We found

the Monte Carlo program is very sensitive to mutants. A simple change could cause a

catastrophic error, which might be a common characteristic of scientific software since the

computation in this type of software is precisely set, and it cannot tolerate any change.

Table 5 shows the mutation testing results.

For mutant type 1 and 2, the mutation scores could not be improved even when new

tests were added to the original tests. However, when the mutation operator 1 or 2 was

Fig. 10 Average reflectance curve R(x,0) versus x. The result satisfies relation MR5 and it correctly shows
the phantom defined in the simulation

860 Software Qual J (2017) 25:841–869

123

applied to different formulas, the mutation scores were different. The mutation scores

indicate that the MT monitored by test adequacy is an effective technique for testing the

‘non-testable’’ Monte Carlo simulation program.

Table 4 Mutation Operators

Operators Description

1. Modify the coefficients in a formula Change the coefficients in a formula for simulating the photon
propagation.

2. Add a constant in a formula Add a negative or positive value to a formula.

3. Change an operator in a formula Change an operator in a formula.

4. Change an operator in a conditional
statement

Change an equality or relational operator in a conditional
statement.

5. Change a constant in a conditional
statement

Increase or decrease the value of a constant in a conditional
statement.

6. Remove a clause in a conditional
statement

Remove a sub-condition in a conditional statement.

7. Remove a case handling Remove one case handling in a multiple case handling section.

8. Modify the photon moving direction Assign a photon a different direction to go.

9. Modify the photon hitting types Assign a photon a different type of media it hits.

Table 5 Mutation testing results

Mutant
Types

Number
of Total

Number
of Dead

Dead
(%)

Killed
by MRs

Comment

1 30 26 87 1, 2, 3,
4, 5

The four mutants that were applied to the formula for
calculating the number of photons could not be
killed.

2 15 4 27 1, 2, 3,
4, 5

The four mutants that were killed were those applied
to the formula for detecting the boundary of photons
in the media.

3 30 30 100 1, 2, 3,
4, 5

Four of them were killed by causing exceptions.

4 30 30 100 1, 2, 3,
4, 5

Six of them were also flagged by the low percentage of
branch coverage.

5 15 15 100 1, 2, 3,
4, 5

All of those constants represent media types or photon
prorogation directions.

6 15 15 100 1, 2, 3,
4, 5

Example: Dir(3)\ 0.0.AND. Pos(3)[= Reg(2),
then remove (Dir(3)\ 0.0.AND.) or (.AND.
Pos(3)[= Reg(2)).

7 5 5 100 1, 2, 3,
4, 5

Mutation operators were only applied to the cases for
complex calculation.

8 5 5 100 1, 2, 3,
4, 5

All of them were also flagged by the low percentage of
branch coverage.

9 5 5 100 1, 2, 3,
4, 5

All of them were also flagged by the low percentage of
branch coverage.

Total 150 135 90 1, 2, 3,
4, 5

Cannot kill all mutants.

Software Qual J (2017) 25:841–869 861

123

3.5.2 Testing MRs with mutation tests

Generating mutation tests is tricky since one expects any outputs from valid test inputs

should not violate any MR. For example, the contrasts of two images calculated by the

Monte Carlo simulation program with any valid pair of refractive index n2 should satisfy

relation MR1, assume values of other parameters of the two simulations remain the same.

It is impossible to create a set of mutation test inputs for MR1 by just adjusting only the

value of n2. The values of other parameters in the configuration file have to be changed in

order to produce outputs that will violate MR1. Due to the complex correlation among the

parameters, tools such as MATLAB are needed for producing the mutation tests. As soon

as all MRs have passed the test, we use MATLAB to visualize the testing results like those

shown in Fig. 7 (for MR3), check the satisfaction of each relation, and then find mutation

test inputs based on the visualized results. When we test MR3, all tests have same values

for all parameters except albedo a2. In order to create a mutation test for MR3, not only the

change of albedo a2 is made, but also the change of index value is made such as in one test,

n2 is set as 1.4, and another one n2 is set as 1.5 (in normal test, n2 should be set as the same

value for MR3). Then, relation MR3 will not be held by the two tests due to the change of

both index and albedo values together, as shown by the red line in Fig. 11, where the

contrast value decreases when the albedo value increase. Using the same idea, we created

two mutation tests for each MR, and each test produced a result that violated the MR under

test. It shows that MR1 to MR5 are well designed, and they are only satisfied by selected

tests. Therefore, they are effective for testing the program.

4 Discussion

We developed five MRs for MT of the Monte Carlo simulation program. While some of the

MRs can be validated by physics theory or experimental results, others (such as MR5) are

difficult to be validated. We selected these MRs based on experiment results (Chen et al.

2007). Several test suites were created for each MR, and each test suite includes at least

four tests. For each test (except those selected for MR5 for homogeneous media), all

a2

0.70 0.75 0.80 0.85 0.90 0.95

C
c

0.0

0.1

0.2

0.3

0.4

0.5

s2=1.5mm-1, g2=0.70

a2=0.60mm-1, g2=0.70

µ

µ

Fig. 11 Red line results are
produced with mutation tests and
violates relation MR3 (Color
figure online)

862 Software Qual J (2017) 25:841–869

123

functions and all branches except those handling exceptions were covered. In order to

cover all branches, new tests that trigger the exception handling should be added. The

results of MT on the Monte Carlo program show that test coverage results can be used for

evaluating the quality of tests and MRs, and the results can be used as a guideline for

selecting adequate MRs and creating tests. The same tests for testing MR5 in heteroge-

neous media have much higher branch coverage than when they are used for testing MR5

in homogeneous media. The coverage difference is useful for narrowing the problem when

testing MR5. If complex test coverage criteria such as state transition coverage or path

coverage are considered, the coverage results can be more useful in evaluating the quality

of MRs and their tests. The coverage results of all of those tests are very similar, which

indicates that simply increasing the number of tests for each MR is of little help for finding

more defects. The test results of MR5 showed that some defects must exist in the Monte

Carlo simulation program. Through testing MR5 for both homogenous and heterogeneous

media, the testing results showed that we can narrow the scope of the potential problem in

the program via analyzing the test coverage results to reveal possible defects, which

eventually were found and corrected. The mutation testing results further showed the

effectiveness of MT monitored by test adequacy, and they suggest the need of additional

MRs to kill all mutants. The testing MRs with mutation tests showed that the selected 5

MRs were effective for testing the Monte Carlo program. In brief, the case study has

demonstrated that the extension of MT with test adequacy evaluation can provide useful

information for developing better tests and MRs for testing complex ‘‘non-testable’’

software.

5 Related work

In software testing, the pass/fail verdict of tests depends on the availability of test oracles,

which define the comparison between test outputs and their expected results (Barr et al.

2015; Baresi and Young 2001). Some software systems are ‘‘non-testable’’ due to the

absence of test oracles. The focus of this research is on adequately testing ‘‘non-testable’’

software particularly on scientific software. Many scientific software systems are belonged

to ‘‘non-testable’’ software, which is often tested with pseudo oracles that are derived from

a different implementation, solutions obtained analytically, simplified data, references

from experiment and theoretical study, MT and many other approaches (Kanewala and

Bieman 2014). But existing test approaches are not adequate for assuring the quality of

scientific software (Kanewala and Bieman 2014; Weyuker 1982). For example, Beer-

Lambert law, van de Hulst’s table, or Radiative Transfer Equation (RTE) can be used for

testing a Monte Carlo simulation program that is used for modeling light propagation

(Arridge 1999; Chen et al. 2007; Keijzer et al. 1989), but they are only applicable to the

system that models homogeneous media (Chen et al. 2007). Therefore, these methods can

be looked at as testing with special cases, which is not sufficient to ensure the quality of the

software. Adequately testing scientific software is a grand challenge. Kanewal and Bieman

classified the challenges into two categories: the challenges caused by the characteristics of

scientific software, and the challenges caused by the cultural differences between scientists

and testers (Kanewala and Bieman 2014). The first challenge that occurs due to the

characteristics of scientific software is the oracle problem. The key for adequately testing

scientific software is to solving oracle problems (Kanewala and Bieman 2014). MT has

demonstrated its effectiveness in addressing oracle problems through successfully testing

Software Qual J (2017) 25:841–869 863

123

many ‘‘non-testable’’ programs such as bioinformatics systems (Chen et al. 2009), machine

learning systems (Xie et al. 2011), compilers (Le et al. 2014), scientific computing systems

(Chen et al. 2002; Ding and Zhang 2016), large-scale database (Lindvall et al. 2015), and

online service systems (Chan et al. 2007; Zhou et al. 2015). A controlled experiment of

three open source programs by 38 testers has shown that MT is cost-effective in fault

detection (Hu et al. 2006), and the result of an empirical study has summarized the fault

detection capability of MRs (Liu et al. 2014). A recent application of MT to the complier

testing has found over 300 bugs in several widely used C/C?? compilers (Le et al. 2014).

MT was also successfully used for the assessment of the quality of search engines Google,

Bing and Baidu (Zhou et al. 2015).

The most important tasks in MT are the identification of adequate MRs and generation

of adequate tests. Several methods on the development of MRs have been proposed.

Murphy, Kaiser, Hu and Wu classified six types of MRs for testing machine learning

systems (Murphy et al. 2008). They include additive or multiplicative, which increases or

decreases or multiplies a source test by a constant value to produce a follow-up test, and

the source test is paired with the follow-up test to test the SUT according to additive or

multiplicative relation; permutative, or invertive, which permutes or reverses the order of

data elements in a source test to produce a paired follow-up test; inclusive or exclusive,

which adds or removes some new datum items in a source test to produce a paired follow-

up test. The six MRs have been widely used for guiding the development of MRs, and they

were extended in later work (Xie et al. 2011). The MRs used for testing the 3D structure

reconstruction program in this paper used the similar MRs. However, the six MRs are

restively weak so that they are not enough to test a complex program, and the effectiveness

has to be rigorously evaluated. In this paper, we evaluated each MR with program-based

coverage, mutation testing, and testing MRs with mutation tests. Murphy also proposed a

set of general guidelines for identifying metamorphic properties according to business

rules, algorithms used in the applications, the implementation of the algorithm, and special

inputs of the application (Murphy 2010). The guidelines offer a good direction for iden-

tifying MRs, and its natural extension is to define a set of criteria for evaluating MRs and

refining MRs. Chen, Poon and Xie proposed a systematic methodology for identifying

MRs based on the combination of categories of test input spaces (Chen et al. 2015). In the

framework, the input space of the SUT is divided into several categories, and then MRs are

developed based on the combination of the categories. The idea behind the approach is to

create MRs that can adequately cover the SUT. The method is useful for developing

adequate MRs and tests for testing scientific software such as the Monte Carlo simulation

program. Murphy, Shen and Kaiser studied function level metamorphic testing, where the

specifications of metamorphic properties are transformed into runtime assertions in func-

tions to ensure that the specification hold during program execution (Murphy et al. 2009;

Murphy 2010). Comparing to system level MRs, function level MRs are easily to be

precisely defined. Therefore, function level MRs can detect even more defects in ‘‘non-

testable’’ programs than system level MRs (Segura et al. 2016), which is due to the

weakness of system level MRs. However, in order to adequately test a program using MT,

system level MRs are necessary. How to combine function level MRs into system level

MRs should be an interesting direction for MT. MRs also can be developed through

program analysis and machine learning. An integrated testing approach based on symbolic

execution and MT has been proposed (Chen et al. 2002). In the approach, all possible

outputs under path conditions of a symbolic input and all symbolic inputs generated

according to an MR are produced by the symbolic execution, and then an input and its

corresponding output is checked for the violation of the MR under every path condition

864 Software Qual J (2017) 25:841–869

123

(Chen et al. 2002). Knewala, Bieman, and Ben-Hur recently reported a result on the

development of MRs for testing scientific software through machine learning data flow and

control flow information extracted from SUT (Kanewala et al. 2015). Its effectiveness has

been demonstrated through discovering the seeded bugs in several experimental programs.

However, these MRs are very general and the programs are tiny. These MRs could be

easily developed based on general MR development guidelines and domain knowledge.

The applicability of the approach to large programs is unclear. However, building MRs

iteratively through machine learning testing data and testing evaluation results could be a

potential solution to the oracle problem (Ding and Zhang 2016).

Test generation is another important task in MT. Traditional test generation techniques

such as program-based, specification-based, and parameter-based test generation are

important for producing source tests in MT. The source tests and their MRs-related tests

are used together for testing SUT in MT. Obviously, the quality of the source tests directly

affects the coverage of test adequacy criteria. Application of specification-based test

generation to scientific software like Monte Carlo simulation could be effective since the

specification of this types of programs normally are much formal and it is much more

abstract than the implementation. Therefore, it is relatively easy to produce adequate

source tests. For example, source tests of the Monte Carlo program can be automatically

produced with a Monte Carlo formal model. However, the method cannot solve the oracle

problem since the correct output of an individual test is still unknown. Gotleib and Botella

have reported how to translate an SUT into an equivalent constraint logic program and

convert a fault-based model of an MR into a goal to be solved in the constraint logic

program (Gotleib and Botella 2003; Gotlieb et al. 1998). The solution of the goal, if found,

is corresponding to a set of tests for revealing potential violations of the MR in the SUT

(Gotleib and Botella 2003). However, due to the complexity of the constraints to be solved,

the applicability of the approach is limited. It is essentially a program analysis technique.

Parameters-based test generation produces tests based on combination of input parameters

such combinatorial technique, category-based technique and random generation. All of

these techniques have been widely used for producing source tests in MT (Chen et al. 2015;

Ding and Zhang 2016; Mayer and Guderlei 2006). Murphy introduced an automated MT

framework, where the SUT runs with both a source test and an MR-related follow-up test

together (Murphy et al. 2009), and the specification of the MR is provided to the program

so that the outputs can be automatically checked. They also discussed heuristics for

reducing false positives and dealing with non-deterministic test outputs through thresholds

and ranges of acceptable outputs (Murphy et al. 2009). Mayer and Guderlei proposed a

random test generation approach for testing image processing applications (Mayer and

Guderlei 2006). A new image is generated through randomly selecting each black pixel

with a probability from a reference image, and then the image is transformed into another

image based on an MR such as rotation or intersection of images. The translated image

becomes a test input for testing the image processing application, and its output can be

verified according to the MR that is used for producing the image. The same idea was used

in this paper, where a confocal image was manipulated with mitochondria for producing

new images. Shan and Zhu reported a method for producing structurally complex tests

through data mutation (Shan and Zhu 2009). A set of mutation operators are defined and a

set of seed tests are created, and then a set of new tests are generated through applying

mutation operators to the seed tests (Shan and Zhu 2009). We used the approach for

creating mutation tests for testing MRs. Guderlei and Mayer proposed a statistical MT,

where two or more output sequences are generated and compared according to the sta-

tistical MRs defined on the program outputs (Guderlei and Mayer 2007). The test

Software Qual J (2017) 25:841–869 865

123

generation techniques for producing source tests and MR-related follow-up tests are

important for producing adequate tests. Our research focus is on evaluation of the adequacy

of the tests and iterative generation of tests through analyzing testing data and test eval-

uation results, which were rarely systematically discussed in existing MT publications.

The evaluation of MT is focused on the selection of MRs since the effectiveness of MT

is highly depended on the selection of MRs. Many researchers support to conduct MT

using as more as possible MRs (Zhou et al. 2009). However, many redundant MRs could

be developed, and they could not improve the testing effectiveness. Therefore, rigorously

evaluating MRs with test adequacy criteria is important for selecting good MRs. Chen,

Huang, Tse, and Zhou discussed an approach for selecting MRs that could be good at fault

detection (Chen et al. 2004). Their case studies indicate that domain knowledge alone is

inadequate for finding good MRs. Good MRs should be selected considering the imple-

mentation of the SUT (Chen et al. 2004). However, Mayer and Guderlei had different

conclusion. They claimed that good MRs should be those defined based on the semantics of

the SUT (Mayer and Guderlei 2006). Asrafi, Liu, and Kuo pointed out good MRs are those

that can make the multiple executions of the program as different as possible (Asrafi et al.

2011). The results further confirm the importance of the evaluation of MRs with program-

based coverage criteria. In addition, mutation testing and testing MRs with mutation tests

are also important to evaluate the effectiveness of MRs. There are few work on mutation

testing of MT such as mutation testing was used for evaluating MT for testing machine

learning algorithms (Zhou et al. 2009), but we have not seen any other work on evaluating

MRs with mutation tests. Our research results could provide a reference for rigorously

evaluating MRs. More important, we have shown the evaluation results can be used for

iteratively developing adequate MRs.

6 Summary and future work

Metamorphic testing is an effective technique for testing systems that do not have test

oracles. Checking outputs against MRs alone is inadequate for ensuring the quality of the

SUT. In this paper, MT is enhanced by the evaluation of test adequacy criteria: program-

based test coverage criteria, mutation testing, and testing MRs with mutation tests. The

evaluation of test adequacy criteria should be a requirement of MT. It serves as a guideline

for selecting MRs, generating tests, and finding defects in the SUT. The effectiveness of

our approach has been demonstrated by testing a image processing program and a Monte

Carlo simulation program, both are ‘‘non-testable’’ scientific software systems. In addition

to checking five MRs, the test adequacy is evaluated during the testing process for refining

and creating MRs and tests. The proposed testing approach with example and case study

results would be useful for testing other scientific software. The case study also raised

several questions regarding the quality of MT. For example, how can we construct ade-

quate MRs in general? The MT monitored by test adequacy provides a primitive solution to

solve the issue. In the future, we will investigate constructing MRs through machine

learning software engineering repositories.

Acknowledgments We thank Dr. Tong Wu for his implementation and testing of the Monte Carlo simu-
lation program. This research is supported in part by Grant #1262933 and #1560037 from the National
Science Foundation.

866 Software Qual J (2017) 25:841–869

123

References

Arridge, S. R. (1999). Optical tomography in medical imaging. Inverse Problems, 15, R41–R93.
Asrafi, M., Liu, H., & Kuo, F-C. (2011). On testing effectiveness of metamorphic relations: A Case study, In

5th International Conference on Secure Software Integration and Reliability Improvement (SSIRI),
pp. 147–156.

Baresi L., & Young, M. (2001). Test oracles. Technical Report CIS-TR01 -02, Department of Computer and
Information Science, University of Oregon.

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015). The Oracle problem in software
testing: A survey. IEEE Transactions on Software Engineering, 41(5), 507–525.

Chan, W. K., Cheung, S. C., & Leung, K. R. (2007). A metamorphic testing approach for online testing of
service-oriented software applications. International Journal of Web Services Research, 4(1), 60–80.

Chen, T. Y., Cheung, S. C., & Yiu, S. (1998). Metamorphic testing: A new approach for generating next test
cases, Technical Report HKUST-CS98-01, Department of Computer Science, Hong Kong University
of Science and Technology.

Chen, T.Y., Feng, J., Tse, T.H. (2002). Metamorphic testing of programs on partial differential equations: a
case study. In Proceedings of 26th Annual International Computer Software and Applications Con-
ference (COMPSAC), pp. 327–333.

Chen, T. Y., Ho, J. W. K., Liu, H., & Xie, X. (2009). An innovattive approach for testing bioinformatics
programs using metamorphic testing, BMC Bioinformatics, pp. 10–24.

Chen, T. Y., Huang, D. H., Tse, T. H., & Zhou, Z. Q. (2004). Case studies on the selection of useful relations
in metamorphic testing’’, In Proceedings of the 4th Ibero-American Symposium on Software Engi-
neering and Knowledge Engineering, pp. 569–583.

Chen, C., Lu, J. Q., Li, K., Zhao, S., Brock, R. S., & Hu, X. H. (2007). Numerical study of reflectance
imaging using a parallel Monte Carlo method. Medical Physics, 34, 2939–2948.

Chen, T. Y., Poon, P. L., & Xie, X. (2015). METRIC: METamorphic relation identification based on the
category-choice framework. Journal of Systems and Software, 116(C), 177–190.

Chen, T. Y., Tse, T. H., & Zhou, Z. Q. (2002). Semi-proving: An integrated method based on global
symbolic evaluation and metamorphic testing. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pp. 191–195.

Confocal microscope, https://en.wikipedia.org/wiki/Confocal_microscopyWikipedia, last accessed on April
30, 2016.

Ding, J., & Zhang D. (2016). A machine learning approach for developing test Oracles for testing scientific
software,In the 28th SEKE (SEKE 2016), San Francisco, July 1–3.

Ding, J., Clarke, P. J., Argote-Garcia, G., & He, X. (2009). A methodology for evaluating test coverage
criteria of high level Petri nets. Information and Software Technology, 51(11), 1520–1533.

Ding, J., Wu, T., Lu, J. Q., Hu, X. (2010). Self-checked metamorphic Testing of an image processing
program, The 4th IEEE International Conference on Security Software Integration and Reliability
Improvement, Singapore, June 9–11.

Ding, J., Zhang, D., Hu, X. (2016). An application of metamorphic testing for testing scientific software, In
1st workshop on metamorphic testing with ICSE, Austin, TX, May 16.

Farrell, P. E., Pigott, M. D., Gorman, G. J., Ham, D. A., Wilson, C. R., & Bond, T. M. (2011). Automated
continuous verification for numerical simulation. Geoscientific Model Development, 4(2), 435–449.

Gotleib, A. & Botella, B. (2003). Automated metamorphic testing, In Proceedings of 27th Annual Inter-
national Computer Software and Applications Conference, (pp. 34–40).

Gotlieb, A., Botella, B., & Rueher, M. (1998). Automatic test data generation using constraint solving
techniques. In ACM International Symposium on Software Testing and Analysis (ISSTA). Software
Engineering Notes, 23(2):53–62.

Guderlei, R., & Mayer, J. (2007). Statistical metamorphic testing—testing programs with random output by
means of statistical hypothesis tests and metamorphic testing’’, In Proceedings of the 7th International
Conference on Quality Software. pp. 404–409, 2007.

Hu, P., Zhang, Z., Chan, W. K., & Tse, T. H. (2006). An empirical comparison between direct and indirect
test result checking approaches. In Proceedings of the 3rd International Workshop on Soft. Quality
Assurance, pp. 6–13.

Jameel, T., Lin, M., & Chao, L. (2015). Test oracles based on metamorphic relations for image processing
applications. In 16th International Conference on SE, AI, Networking and Parallel/Distributed Com-
puting (SNPD), pp. 1–6.

Jia, Y., & Harman, M. (2011). An analysis and survey of the development of mutation testing. In IEEE
Transactions on Software Engineering, 37(5), pp. 649–678, September–October 2011.

Software Qual J (2017) 25:841–869 867

123

https://en.wikipedia.org/wiki/Confocal_microscopyWikipedia

Kanewala, U., & Bieman, J. M. (2014). Testing scientific software: A systematic literature review. Infor-
mation and Software Technology, 56(10), 1219–1232.

Kanewala, U., Bieman, J. M., & Ben-Hur, A. (2015). Predicting metamorphic relations for testing scientific
software: A machine learning approach using graph kernels. Journal of Software Testing, Verification
and Reliability, 26(3), 245–269.

Keijzer, M., Jacques, S. L., Prahl, S. A., & Welch, A. J. (1989). Light distributions in artery tissure: Monte
Carlo simulations for finite-diameter laser beams. Lasers in Surgery and Medicine, 9, 148–154.

Le, V., Afshari, M., & Su, Z. (2014). Compiler validation via equivalence modulo inputs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
‘14). ACM, New York, NY, USA, pp.216–226.

Lindvall, M., Ganesan, D., Árdal, R., & Wiegand, R. E. (2015). ‘‘Metamorphic model-based testing applied
on NASA DAT: an experience report’’. In Proceedings of the 37th International Conference on
Software Engineering, Vol. 2 (ICSE ‘15), Vol. 2. pp. 129–138.

Liu, H., Kuo, F., Towey, D., & Chen, T. Y. (2014). How effectively does metamorphic testing alleviate the
oracle problem? IEEE Transactions on Software Engineering, 40(1), 4–22.

Mayer, J., Guderlei, R. (2006). On random testing of image processing applications. In Proceedings of 6th

International Conference on Quality Software (QSIC’06), pp. 85–92.
Mayer, J. & Guderlei, R. (2006). An empirical study on the selection of good metamorphic relations. In

Proceedings of the 30th Annual International Computer Software and Applications Conference
(COMPSAC), pp. 475–484.

Mayer, J., Infor, A. A., Ulm, U. (2005). On testing image procesing applications with staticstical methods.
Software Engineering (SE 2005), Lecture Notes in Informatics, pp. 69–78.

Murphy, C. Kaiser, G., Hu, L. & Wu, L. (2008). Properties of machine learning applications for use in
metamorphic testing’’. In Proceedings of the 20th International conference on software engineering
and knowledge engineering (SEKE), pp. 867–872.

Murphy, C. (2010). Metamorphic testing techniques to detect defects in applications without test Oracles.
Doctoral dissertation, Columbia University.

Murphy, C., Shen, K.,& Kaiser, G. (2009). Automatic system testing of program without test oracles. In
Proceedings of 2009 ACM International Symposium of Software Testing and Analysis (ISSTA).

Murphy, C., Shen, K., & Kaiser, G. (2009). Using JML runtime assertion checking to automate metamorphic
testing in applications without test oracles, In Proceedings of the 2nd IEEE International Conference on
Software Testing, Verification and Validation (ICST).

Nguyen-Hoan, L., Flint, S., Sankara, R. (2010). A survey of scienfitic software development, In 2010 ACM
International Symposium on Empiricial Software Engineering and Measurement (ESSM’10),
pp. 12:1–12:10.

Nie, C., & Leung, H. (2011). A survey of combinatorial testing. ACM Computing Survey, 43(2), 11.
Obayashi, M., Kubota, H., McCarron, S. P., & Mallet L. (1998). The assertion based testing tool for OOP:

ADL2. http://adl.xopen.org/exgr/icse/icse98.htm May 1998.
Pacheco, P. (1996). Parallel Programming with MPI. Morgan Kaufmann; 1st edition.
Pezzè, M., & Young, M. (2007). Software testing and analysis: Process, principles, and techniques. New

Jersey: Wiley.
Segura, S., Fraser, G., Sanchez, A., & Ruiz-Cortes, A. (2016). A Survey on Metamorphic Testing. In IEEE

Transaction on Software Engineering (vol. PP, no. 99). doi:10.1109/TSE.2016.2532875.
Sanders, R., Kelly, D. (2008). The challenge of testing scientific software.In Proceedings of the Conference

for the Association for Software Testing (CAST), pp. 30–36, Toronto, July.
Shan, L. & Zhu, H. (2009). Generating structually complex test cases by data mutation: A case study of

testing an automated modelling tool. The Computer Journal, 52(5).
Weyuker, E. J. (1982). On testing non-testable program. Computer Journal, 25(4), 465–470.
Xie, X., Ho, J., Murphy, C., Kaiser, G., Xu, B., & Chen, T. Y. (2011). Testing and validating machine

learning classifiers by metamorphic testing. J. System and Software., 84(4), 544–558.
Zhou, Z. Q., Chan, W. K., Chan, W. K., Tse, T. H., & HU, P. (2009). Experimental study to compare the use

of metamorphictesting and assertion checking. Journal of Software, 20(10), 2637–2654.
Zhou, Z.Q., Xiang, S., Chen, T.Y. (2015). Metamorphic testing for software quality assessment: A study of

search engines. In IEEE Transactions on Software Engineering, PrePrints, doi:10.1109/TSE.2015.
2478001.

Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test coverage and adequacy. ACM Computing
Surveys, 29(4), 366–427.

Zhu, H., & He, X. (2002). A methodology of testing high-level petri nets. Journal of Information and
Software Technology, 44, 473–489.

868 Software Qual J (2017) 25:841–869

123

http://adl.xopen.org/exgr/icse/icse98.htm
http://dx.doi.org/10.1109/TSE.2016.2532875
http://dx.doi.org/10.1109/TSE.2015.2478001
http://dx.doi.org/10.1109/TSE.2015.2478001

Junhua Ding is an associate professor of computer science with East
Carolina University (ECU). He received BS, MS, and Ph.D., all in
computer science in 1994, 1997, and 2004, respectively. Prior he
joined ECU at 2007, he had worked as a software engineer and project
manager with medical companies for 8 years. His research interests are
software design and analysis, software testing, Petri nets, and cytom-
etry. He has published 60 peer-reviewed conference proceeding and
journal papers. He is a member of ACM and IEEE.

Xin-Hua Hu is a professor of physics with East Carolina University
(ECU). He received BS and MS in Physics from Nanka University in
1982, 1985, respectively, and Ph.D. in physics from University of
California at Irvine in 1991. His research is mainly focused on flow
cytometry study of biological cells through light scattering and turbid
biological tissues to determine their optical properties (http://bmlaser.
physics.ecu.edu). In recent years, he has developed a new method of
polarization diffraction imaging flow cytometry that allows rapid
measurement of the coherent light distribution from flowing cells and
extracts quantitative information of cellular morphology for cell assay
and phenotyping. He has published more than 50 papers in peer-re-
viewed journals, and more than 60 conference proceeding papers and
presentations.

Software Qual J (2017) 25:841–869 869

123

http://bmlaser.physics.ecu.edu
http://bmlaser.physics.ecu.edu

	Application of metamorphic testing monitored by test adequacy in a Monte Carlo simulation program
	Abstract
	Introduction
	MT monitored by test adequacy
	Identification of MRs
	Metamorphic test generation
	Test adequacy evaluation
	Iterative development of adequate tests and MRs
	Discussion

	Case study
	Monte Carlo modeling of reflectance imaging
	Program structure
	Experiment setup
	Test execution
	Identification of MRs
	Test generation
	Testing results

	Test evaluation
	Mutation testing
	Testing MRs with mutation tests

	Discussion
	Related work
	Summary and future work
	Acknowledgments
	References

